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ABSTRACT: Ethylene production from oxidative coupling of
methane is a sustainable and economically attractive alternative to
that through traditional hydrocarbon cracking technology.
However, efficient ethylene separation from the complex reaction
mixture is a daunting challenge that hinders the practical adoption
of this technology. Herein, we report the efficient adsorptive
separation of the CH4/CO2/C2H4/C2H6 mixture using three
representative metal−organic frameworks (MOFs) (UTSA-74,
MOF-74, and HKUST-1) with diverse open metal sites. The
efficient separation relies on tuning the selectivity through the
convergence of characteristics including Lewis acidity of open
metal sites, pore space, and cooperative binding behavior. The
separation performance of these materials has been evaluated through single-component gas adsorption and dynamic breakthrough
experiments. HKUST-1 provides the highest separation potential (4.1 mmol/g) thanks to its simultaneously high ideal adsorbed
solution theory (IAST) selectivity and ethylene adsorption capacity, representing a benchmark material for such a challenging
quaternary separation.
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■ INTRODUCTION

Due to the increase of global climate change and environ-
mental concerns, researchers have been seeking alternative
supplies of chemical feedstocks to reduce dependence on fossil
fuels. Ethylene (C2H4) is the largest petrochemical feedstock
to produce widely used polypropylene and other chemical
commodities. The annual production of ethylene was more
than 170 million tons globally in 2016, mainly by cracking of
naphtha or ethane (C2H6).

1 There have been many attempts
to produce ethylene through conversions of single-carbon
species such as methane and carbon dioxide. One alternative
ethylene production method, oxidative coupling of methane
(OCM),2−4 has attracted great attention during the past
several decades. Methane (CH4) is mainly used as fuel for
power and heat generation, owing to its high abundance and
low cost. Upgrading methane to higher hydrocarbons such as
valuable ethylene is of great economic and environmental
benefits. Besides, methane can be generated from renewable
sources such as biogas5 and catalytic CO2 reduction,6 which
enables sustainable ethylene production from the OCM
process.
In a typical OCM process, the product contains certain

amounts of unreacted CH4 and byproducts including C2H6
and CO2 together with C2H4.

7 The low yield of C2H4 and
complex product composition make the separation of C2H4

very difficult by conventional distillation. A feasible solution is
using porous adsorbents to selectively extract C2H4 from the
mixture, while the unreacted CH4 can be recycled for a new
reaction cycle.7,8

As emerging porous materials, metal−organic frameworks
(MOFs) have demonstrated advanced performance in a variety
of applications such as catalysis,9−11 water harvest,12,13

biomedicine,14,15 gas storage,16−20 and separation.21−25

Tremendous progress has been made for the separation of
binary gas mixtures through finely tuning the pore aperture
size,26−31 surface functionality,1,32−36 and flexibility.37−41

Separations of the ternary or quaternary mixtures are less
explored and much more challenging.42−44 For the OCM
reaction mixture (CH4/CO2/C2H4/C2H6), CH4 generally has
weak interaction with adsorbents and low adsorption capacity.
Some MOF materials like HKUST-1 have shown selective
adsorption of CO2 and C2 hydrocarbons over CH4 in
corresponding mixtures.45,46 The grand challenge is simulta-
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neous C2H4/C2H6 and C2H4/CO2 separation, and multiple
adsorbents were adopted sometimes.42 The kinetic diameter of
C2H4 (4.163 Å) falls between those of CO2 (3.300 Å) and
C2H6 (4.443 Å),47 which makes sieving separation extremely
difficult. The preferential binding of C2H4 over C2H6 at open
metal sites (OMS) of MOFs through pi complexation is an
efficient strategy for C2H4/C2H6 separation.

32 However, such a
strategy becomes quite complicated in the presence of CO2,
which has a higher quadrupole moment47 (1.5 × 10−26 esucm2

for C2H4 and 4.3 × 10−26 esucm2 for CO2) and coordinates to
open metal sites through Lewis acid−base interaction.48 Our
previous discovery of UTSA-74 revealed that the orientation of
open metal sites could affect the binding mode and adsorption
capacity of CO2.

49 At the same time, in consideration of the
different binding mechanisms of C2H4 and CO2, weaker Lewis
acid might preferentially adsorb C2H4 over CO2 due to its
weaker binding affinity toward CO2.

48,50,51 Therefore, we

envision that pore structure engineering of MOF materials
could realize the challenging C2H4/CO2 separation and
eventually lead to efficient CH4/CO2/C2H4/C2H6 separation.
Herein, we report selective adsorption of C2H4 from the

CH4/CO2/C2H4/C2H6 (1/1/1/1, v/v/v/v) mixture by three
MOF materials (MOF-74, UTSA-74, and HKUST-1) with
open metal sites and a diverse pore matrix. Gas adsorption
isotherms and dynamic breakthrough studies demonstrated the
successful separation with all three materials. Especially,
HKUST-1 with the highest selectivity and C2H4 adsorption
capacity exhibits large separation potential, representing a
benchmark material for such separation. These encouraging
results highlight the great potential of MOFs with open metal
sites and tunable pore structures for multicomponent
separation and bring promise for alternative ethylene
production by oxidative coupling of methane.

Figure 1. Crystal structure, pore geometry, and open metal sites of MOFs studied. (a) UTSA-74; (b) MOF-74; and (c) HKUST-1. Yellow arrows
indicate the guest accessible sites of metals in each framework.

Figure 2. Gas adsorption isotherms and IAST selectivity. CH4, CO2, C2H4, and C2H6 adsorption isotherms at 298 K of UTSA-74 (a), MOF-74 (b),
and HKUST-1 (c). IAST selectivity of MOFs studied: (d) C2H4/C2H6, (e) C2H4/CO2, and (f) C2H4/CH4.
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■ RESULTS AND DISCUSSION

Three representative MOF materials (UTSA-74,49 MOF-74,52

and HKUST-153,54) with weak Lewis acidic sites and diverse
pore structures were chosen to evaluate the CH4/CO2/C2H4/
C2H6 separation performance. The Zn of MOF-74 is in the
square-pyramidal coordination mode with one open site, while
Zn in its isomeric structure UTSA-74 features two accessible
binding sites in the square planner coordination geometry
(Figure 1a,b). The Cu of HKUST-1 in the square planar
coordination geometry forms a paddle-wheel unit with one
open site per metal (Figure 1c). UTSA-74 and MOF-74
feature a one-dimensional (1D) open channel, while HKUST-
1 possesses three types of cages (Figure 1a−c). These three
materials were synthesized by solvothermal reactions and their
phase purity was confirmed by powder X-ray diffraction
(PXRD) measurements (Figures S1−S3), which matches well
with simulated patterns from single-crystal structures.
Upon activation, the permanent porosity of these materials

was established by N2 adsorption at 77 K (Figures S4−S6).
According to the adsorption isotherms, the Brunauer−
Emmett−Teller (BET) surface areas were calculated to be
711 m2/g for UTSA-74, 915 m2/g for MOF-74, and 1589 m2/
g for HKUST-1. Further, the pore volumes were determined to
be 0.37 cm3/g for UTSA-74, 0.47 cm3/g for MOF-74, and 0.77
cm3/g for HKUST-1, which match well with their theoretical
pore volumes calculated by PLATON based on their crystal
structures (Table S1).
The separation performance was first studied by single-

component gas adsorption isotherms at 298 K. As expected,
these materials with weak Lewis acidic sites exhibit selective
adsorption of C2H4 over the coordinatively competitive CO2

molecule, as well as the saturated hydrocarbons CH4 and
C2H6. The C2H4 adsorption capacity of HKUST-1 reached
175 cm3/g at 1 bar being the highest among all three materials,
followed by those of MOF-74 (133 cm3/g) and UTSA-74 (104
cm3/g). The C2H4 packing densities were further calculated to
be 12.4 mmol/cm3 for UTSA-74, 12.6 mmol/cm3 for MOF-74,
and 10.1 mmol/cm3 for HKUST-1. With the highest pore

volume, HKUST-1 yields the highest C2H4 adsorption capacity
and slightly lower packing density.
Next, we applied the well-established ideal adsorbed solution

theory (IAST)55 to evaluate the C2H4/C2H6, C2H4/CO2, and
C2H4/CH4 selectivities of these materials (see fitting
parameters in Tables S2−S4). For C2H4/C2H6, the IAST
selectivity of HKUST-1 (3.7) is higher than those of UTSA-74
(3.0) and MOF-74 (2.9), as shown in Figure 2d. HKUST-1
and UTSA-74 exhibit the same C2H4/CO2 selectivity (5.4),
which is higher than that of MOF-74 (3.3). For C2H4/CH4, all
three materials exhibit quite high selectivities (80.2 for
HKUST-1, 53.2 for UTSA-74, and 35.7 for MOF-74), which
can be attributed to the much weaker host−guest interaction
and lower uptake of CH4. Overall, HKUST-1 has the highest
selectivity among these three materials for C2H4/C2H6, C2H4/
CO2, and C2H4/CH4 binary mixtures.
The high C2H4/CO2 selectivity of UTSA-74 is because half

of the open metal sites are hindered by the CO2 molecule
coordinated on the neighbor Zn open site. As revealed by
single-crystal X-ray diffraction49 (Figure 3a), the two oxygen
atoms of the CO2 molecule coordinate with two Zn atoms in
the bridged form with bond lengths of 2.177 and 3.170 Å. Such
a unique coordination mode could only be formed with the
proper distance and direction of the open metal sites. In
comparison, C2H4 binds the open metal sites with one
molecule in regular coordination with the pi bond, and the
neighboring molecule coordinates with one sp2 carbon in the
predicted C2H4 binding structure by the grand canonical
Monte Carlo (GCMC) simulations. Hydrogen bonding
interactions between neighboring C2H4 molecules were also
found (Figure 3c).
To understand the superior selectivity of HKUST-1, we

further studied the interaction between C2H4 and the HKUST-
1 framework. GCMC calculations revealed that C2H4
molecules are primarily binding to open metal sites with
bond lengths in the range of 2.4−2.8 Å, as shown in Figure 3d.
These coordinated C2H4 molecules also formed multiple weak
hydrogen bonding (H···C) interactions with each other as well
as uncoordinated C2H4 molecules. The intermolecular C−

Figure 3. Cooperative host−guest and guest−guest interactions. (a) Bridged CO2 binding at open metal sites of UTSA-74 as revealed by single-
crystal X-ray diffraction.49 (b) CO2 binding at open metal sites of HKUST-1. (c) Ethylene binding at open metal sites of UTSA-74 (d) Ethylene
binding at open metal sites and supramolecular assembly in HKUST-1. (b−d) Optimized structures with loaded guests by the GCMC simulations.
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H···π(ethylene) distances between ethylene molecules are in the
range of 3.391−4.199 Å being comparable to those in NOTT-
300 (3.82−4.62 Å).35 The appropriate pore space in HKUST-
1 and the open metal sites collaboratively made it show high
C2H4 adsorption, whereas relatively low C2H6 adsorption,
especially at low pressure (25 kPa, Figure 4a), thus showing
the highest C2H4/C2H6 selectivity among these adsorbents.
The ratio of adsorbed C2H4 to OMS is 3.1, which is much
higher than those of UTSA-74 (0.74) and MOF-74 (0.95),
indicating these two MOFs adsorb C2H4 primarily at open
metal sites (Figure S7). In comparison, no obvious guest−
guest interaction was found in the CO2-loaded structure, only
CO2 coordination at open metal sites and van der Waals
interaction with the frameworks were observed (Figure 3b).
For the separation of the CH4/CO2/C2H4/C2H6 (1/1/1/1,

v/v/v/v) mixture at 101 kPa, the partial pressure of each
component is ∼25 kPa. Compared with UTSA-74 and MOF-
74, HKUST-1 adsorbed the highest amount of C2H4, while the
lowest amount of CO2 and C2H6 at 25 kPa, as shown in Figure

4a. The CO2 adsorption of HKUST-1 is slightly lower than
that of UTSA-74 and much lower than that of MOF-74. The
stronger guest−guest interaction together with π complexation
of C2H4 in HKUST-1 facilitated high adsorption capacity at a
low-pressure region. The heat of adsorption was also calculated
based on adsorption isotherms at 298 and 273 K using the
Virial method (Figures S8−S13). Since the C2H4 adsorption of
HKUST-1 is promoted by weak hydrogen bonding inter-
actions, its Qst is ∼26 kJ/mol, which is comparable to that of
MOF-74 and smaller than that of UTSA-74. The low Qst of
HKUST-1 is preferred for the easy regeneration of the material
with low energy penalty.
Considering contributions from both selectivity and

adsorption capacity, we further calculated the separation
potential56 to evaluate the separation performance of the
CH4/CO2/C2H4/C2H6 mixture. As shown in Figure 4b and
Table S5, HKUST-1 exhibits much higher separation potential
(4.1 mmol/g) than those of UTSA-74 (2.3 mmol/g) and
MOF-74 (2.5 mmol/g), representing a new benchmark for

Figure 4. Adsorption and separation properties of UTSA-74, MOF-74, and HKUST-1. (a) Adsorption capacity of C2H4, C2H6, and CO2 at 25 kPa.
(b) Theoretical values of separation potential, productivity of 99%+, and C2H4 uptake in the mixture of CH4/CO2/C2H4/C2H6 (1/1/1/1, v/v/v/
v) at 1 bar.

Figure 5. Breakthrough separation of CH4/CO2/C2H4/C2H6 (1/1/1/1, v/v/v/v) under 298 K and 1 bar with UTSA-74 (a), MOF-74 (b), and
HKUST-1 (c). (d) Dynamic C2H4 uptake of HKUST-1 during five repeated breakthrough cycles.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.1c03923
ACS Appl. Mater. Interfaces 2021, 13, 22514−22520

22517

http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03923/suppl_file/am1c03923_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03923/suppl_file/am1c03923_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acsami.1c03923/suppl_file/am1c03923_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.1c03923?fig=fig5&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.1c03923?rel=cite-as&ref=PDF&jav=VoR


CH4/CO2/C2H4/C2H6 separation. The C2H4 uptakes from
the quaternary mixture were calculated to be 2.77 mmol/g for
UTSA-74, 3.22 mmol/g for MOF-74, and 4.72 mmol/g for
HKUST-1. Such superiority of HKUST-1 can be attributed to
its simultaneously high selectivity and high adsorption capacity
as discussed above.
With these encouraging results, we carried out transient

breakthrough simulations to evaluate the separation perform-
ance under dynamic conditions. As expected, all three MOFs
can separate C2H4 from the CH4/CO2/C2H4/C2H6 (1/1/1/1,
v/v/v/v) mixture (Figures S15a, S16a, and S17a). Interest-
ingly, CO2 eluted out before C2H6 for UTSA-74 and HKUST-
1, while these two gases break through almost simultaneously
for MOF-74. The breakthrough order of UTSA-74 and
HKUST-1 is quite unique because MOFs with open metal
sites usually bind CO2 stronger than C2H6, which leads to the
opposite CO2−C2H6 breakthrough order.8 The unique
property of UTSA-74 and HKUST-1 enables the simultaneous
capture of valuable C2 hydrocarbons, providing extra benefit
besides C2H4 recovery alone. The productivity of the 99%+
pure C2H4 product was determined by transient desorption
simulations (Figures S15b, S16b, and S17b). Following the
same trend of separation potential, HKUST-1 yields the
highest productivity of 2.97 mmol/g (Figure 4b and Table S5).
Breakthrough experiments of these materials have been

conducted with the modeling CH4/CO2/C2H4/C2H6 (1/1/1/
1, v/v/v/v) gas mixture at 1 bar and 298 K under a flow rate of
2.0 mL/min. As shown in Figure 5a−c, the breakthrough order
follows the simulated patterns quite well. The breakthrough
volumes (converted from the flow rate and breakthrough time)
of C2H4 are 76 mL/g for UTSA-74, 162 mL/g for MOF-74,
and 219 mL/g for HKUST-1. The highest breakthrough
volume for HKUST-1 can be attributed to its highest C2H4
adsorption capacity and separation potential. The dynamic
uptakes were calculated to be 19 mL/g for UTSA-74, 41 mL/g
for MOF-74, and 55 mL/g for HKUST-1. The HKUST-1
material can be facilely regenerated by purging with helium gas
for 30 min under a flow rate of 50 mL/min at room
temperature. A cyclic breakthrough experiment (Figures 5d
and S19) demonstrated that HKUST-1 can be utilized for at
least five cycles without an obvious change in their dynamic
uptakes, indicating the satisfactory stability under testing
conditions. Considering MOFs with OMSs are usually water-
sensitive, for a humid OCM mixture in practical application, a
predying process or further hydrophobic modification on MOF
adsorbents is a feasible option.

■ CONCLUSIONS
In summary, we have evaluated three MOF materials with
weak Lewis acidic open metal sites and diverse pore structures
for C2H4 recovery from a quaternary OCM mixture. HKUST-1
with high C2H4 adsorption capacity and selectivity over C2H6,
CO2, and CH4 provides the highest separation potential,
representing a new benchmark material for such separation.
Besides, UTSA-74 and HKUST-1 with high C2H4/CO2
selectivity were able to simultaneously capture all valuable
C2 hydrocarbons (C2H4 and C2H6). Investigation on the
host−guest interaction revealed that the pore matrix (distance
and orientation between open metal sites) played an important
role in tuning the guest binding mode and adsorption capacity.
Overall, this work brings great promise for alternative ethylene
production from oxidative coupling of methane by efficient
ethylene recovery from the reaction product mixture. The

separation strategies of this work are expected to inspire and
flourish the separation of multicomponent mixtures through
tuning the pore matrix of MOFs with open metal sites.

■ EXPERIMENTAL SECTION
Materials, Instrument, and Simulation Details. All commer-

cial chemicals were used without further purification unless otherwise
mentioned. Compressed single-component gases (C2H6, C2H4, CH4,
CO2, and N2) and a mixture of CH4/CO2/C2H4/C2H6 (1/1/1/1, v/
v/v/v) were all purchased from Airgas.

Powder X-ray diffraction (PXRD) data were collected on a Rigaku
Smartlab3 X-ray powder diffractometer equipped with a Cu sealed
tube (λ = 1.54178 Å) at room temperature. Gas sorption isotherms
were measured using a Micromeritics ASAP 2020 system at various
temperatures. The experimental temperatures were controlled by
liquid nitrogen bath (77 K), ice-water bath (273 K), and water bath
(298 K).

The breakthrough experiments were carried out in a self-made
dynamic mixed-gas breakthrough setup. A stainless-steel column with
inner dimensions of ϕ = 4 mm × 80 mm was used for sample packing.
The mixed-gas flow and pressure were controlled by using a pressure-
control valve and a mass flow controller. Outlet effluent from the
column was continuously monitored using gas chromatography (GC-
2014, Shimadzu) with a thermal conductivity detector (TCD). The
column packed with the sample was first purged with a flow of He (70
mL/min) for 2 h at room temperature. The mixed-gas flow rate
during the breakthrough process was 2 mL/min using the CH4/CO2/
C2H4/C2H6 (1/1/1/1, v/v/v/v) mixture at room temperature (298
K).

The grand canonical Monte Carlo (GCMC) simulations were
performed for CO2 and C2H4 adsorption on HKUST-1, and C2H4
adsorption on UTSA-74. The MOF skeletons and gas molecules were
both treated as rigid bodies. The saturation/maximum uptakes were
modeled at 298 K using the fixed pressure task and the Metropolis
method. The equilibration steps and the production steps were set to
1.0 × 105 and 1.0 × 106, respectively. The gas−framework interaction
and the gas−gas interaction were described by the standard universal
force field (UFF).

MOF Synthesis and Activation. Three MOF materials (UTSA-
74,49 MOF-74,52 and HKUST-153,54) were synthesized according to
the literature methods. The as-synthesized materials were washed with
fresh DMF 10 times during 24 h and fresh anhydrous methanol for 10
during another 24 h before transferring to the sample tube for
activation on an ASAP 2020 machine. UTSA-74 was activated at 250
°C for 11 h until the pressure dropped to 7 μmHg, MOF-74 was
activated at 180 °C for 11 h, and HKUST-1 was activated at 120 °C
for 12 h.
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1. Powder X-ray diffraction

Figure S1. PXRD of UTSA-74.
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Figure S2. PXRD of MOF-74.

Figure S3. PXRD of HKUST-1.

2. Adsorption isotherms



S-4

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

Adsorption
Desorption

N
2 U

pt
ak

e 
@

 7
7 

K

P/P0

Figure S4. N2 adsorption isotherm of UTSA-74 at 77 K.

 

0.0 0.2 0.4 0.6 0.8 1.0
0

50

100

150

200

250

300

350

Adsorption
Desorption

N
2 U

pt
ak

e 
@

 7
7 

K

P/P0

Figure S5. N2 adsorption isotherm of MOF-74 at 77 K.
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Figure S6. N2 adsorption isotherm of HKUST-1 at 77 K.

Table S1. Comparison of adsorption properties.

MOF Vp Theore
tical Vp

Crystal 
density

OMS 
density

C2H4 

adsorption
C2H4 to 
OMS 
ratio

C2H4 

packing 
density

MOF-74 0.47 
cm3/g

0.46 
cm3/g

1.219 
g/cm3

6.2 
mmol/g 

5.9 
mmol/g

0.95 12.6 
mmol/cm3

UTSA-74 0.37 
cm3/g

0.36 
cm3/g

1.34 
g/cm3

6.2 
mmol/g 

4.6 
mmol/g

0.74 12.4 
mmol/cm3

HKUST-1 0.77 
cm3/g

0.75 
cm3/g

0.879 
g/cm3

2.5 
mmol/g 

7.8 
mmol/g

3.12 10.1 
mmol/cm3

Note: theoretical Vp was calculated by PLATON using probe of 1.8 Å; C2H4 adsorption 
based on isotherms measured at 298 K. 
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Figure S7. Molar ratio of adsorbed C2H4 to open metal sites. 
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Figure S8. Adsorption isotherms of UTSA-74 at 273 K. 
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Figure S9. Adsorption isotherms of MOF-74 at 273 K. 
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Figure S10. Adsorption isotherms of HKUST-1 at 273 K. 
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Figure S11. Qst of UTSA-74 for C2H4, C2H6, CO2, and CH4 determined using Virial method with 
isotherms at 298 K and 273 K. 
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Figure S12. Qst of MOF-74 for C2H4, C2H6, CO2, and CH4 determined using Virial method with 
isotherms at 298 K and 273 K.
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Figure S13. Qst of HKUST-1 for C2H4, C2H6, CO2, and CH4 determined using Virial method with 
isotherms at 298 K and 273 K. The increased Qst of C2H6 at high loading indicates that the guest-guest 

interaction increases likely due to pore filling effect.1
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3. Calculation of IAST selectivity and separation potential

The unary isotherms for C2H4 at 298 K in UTSA-74, ZnMOF-74, and HKUST-1 were 

fitted with excellent accuracy using either the dual-site Langmuir model, where we 

distinguish two distinct adsorption sites A and B: 

, ,

1 1
sat A A sat B B

A B

q b p q b p
q

b p b p
 

 
(S1)

The unary isotherms for C2H6 at 298 K in UTSA-74, ZnMOF-74, and HKUST-1 were 

fitted with the 1-site Langmuir-Freundlich isotherm with excellent accuracy

,

1
sat A A

A

q b p
q

b p






(S2)

The unary isotherms for CO2, and CH4 at 298 K in UTSA-74, ZnMOF-74, and HKUST-

1 wee fitted with the 1-site Langmuir isotherm with excellent accuracy

,

1
sat A A

A

q b p
q

b p



(S3)

The unary isotherm fit parameters for each of the 3 MOFs are provided in Table S, Table S, and 

Table S4.

The unary isotherm data for Mn2(m-dobdc), ZJNU-49, NOTT-300, and HOF-3 were 

taken from the original literature sources.  
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Table S2. Parameter fits for C2H4, C2H6, CO2, and CH4 in HKUST-1. 

Site A Site B

qA,sat
mol kg-1

bA

Pa A
A qB,sat

mol kg-1
bB

Pa B
A

C2H4 6 5.705E-06 1 6 1.534E-04 1

C2H6 14.5 8.890E-06 1

CO2 22 3.230E-06 1

CH4 6 1.957E-06 1

Table S3. Parameter fits for C2H4, C2H6, CO2, and CH4 in UTSA-74. 

Site A Site B

qA,sat
mol kg-1

bA

Pa A
A qB,sat

mol kg-1
bB

Pa B
A

C2H4 3.6 5.812E-05 1 1.6 9.690E-04 1

C2H6 4.5 1.815E-05 1.15

CO2 7.2 1.248E-05 1

CH4 8 1.365E-06 1

Table S4. Parameter fits for C2H4, C2H6, CO2, and CH4 in ZnMOF-74. 

Site A Site B

qA,sat
mol kg-1

bA

Pa A
A qB,sat

mol kg-1
bB

Pa B
A

C2H4 3.7 4.030E-06 1 5.2 1.500E-04 1

C2H6 6.4 5.446E-06 1.2

CO2 9.1 1.574E-05 1

CH4 15 6.983E-07 1
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For C2H4(1)/C2H6(2)/CO2(3)/CH4(4) mixture separations, three adsorption 

selectivities for C2H4(1)/C2H6(2), C2H4(1)/CO2(3), and C2H4(1)/CH4(4) pairs may be 

defined

 
1 31 2 1 4

12 13 14
10 20 10 30 10 40

; ; ;ads ads ads
q qq q q qS S S

y y y y y y
  

(S4)

In eq (S4),  are the mole fractions of the bulk gas phase 10 20 30 40, , , 0.25y y y y 

mixture. The molar loadings  of the four components are determined using the 1 2 3 4, , ,q q q q

Ideal Adsorbed Solution Theory (IAST) of Myers and Prausnitz using the unary isotherm 

fits as data inputs.2 Error! Reference source not found. presents IAST calculations of the 

adsorption selectivities for 25/25/25/25 C2H4/C2H6/CO2/CH4 mixtures at 298 K as function 

of the total bulk gas phase pressure, pt, in UTSA-74, ZnMOF-74, and HKUST-1. At pt = 

100 kPa, it is noted that HKUST-1 has the highest selectivities for the three binary pairs.

The C2H4(1)/C2H6(2)/CO2(3)/CH4(4) mixture separations are envisaged to be 

carried out in fixed bed adsorbers. In such devices, the separations are dictated by a 

combination of adsorption selectivity and uptake capacity. For all three MOFs, UTSA-74, 

ZnMOF-74, and HKUST-1, the desired product C2H4(1) can be recovered as pure 
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component only in the desorption phase. Using the shock wave model for fixed bed 

adsorbers, Krishna3-4 has suggested that the appropriate metric is the separation 

potential, . The appropriate expression describing the productivity of pure C2H4 in the q

desorption phase of fixed-bed operations is 

   10
1 2 3 4

20 30 40

yq q q q q
y y y

    
 

(S5)

In eq (S5),  are the mole fractions of the feed mixture during 10 20 30 40, , , 0.25y y y y 

the adsorption cycle. In the derivation of eq (S5), it is assumed that the concentration 

“fronts” traversed the column in the form of shock waves during the desorption cycle. The 

molar loadings  of the four components are determined using the Ideal 1 2 3 4, , ,q q q q

Adsorbed Solution Theory (IAST) of Myers and Prausnitz using the unary isotherm fits as 

data inputs.2 The physical significance of  is the maximum productivity of pure C2H4(1) q

that is achievable in fixed bed adsorbers; it may be considered as a combined selectivity-

capacity matrix.

 Figure 4b and Table S5 presents IAST calculations of the  and the C2H4 uptake, q

in 25/25/25/25 C2H4/C2H6/CO2/CH4 mixtures at 298 K and 100 kPa.  It is noteworthy that 
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HKUST-1 has the highest  value and we should therefore expect HKUST-1 to have q

the highest productivity of pure C2H4 in the desorption phase of PSA operations. 

4. Transient breakthrough simulations

We describe below the simulation methodology used to perform transient 

breakthrough calculations for fixed bed adsorbers (see schematic in 14). The simulation 

methodology is the same as used in our earlier publications.3-7 For an n-component gas 

mixture flowing through a fixed bed maintained under isothermal, isobaric, conditions, the 

molar concentrations in the gas phase at any position and instant of time are obtained by 

solving the following set of partial differential equations for each of the species i in the gas 

mixture6, 8-10

   2

2

( , ) ( , ) 1 ( , )( , ) ( , ) 0; 1,2,...ii i i
ax

v t z c t z q t zc t z c t zD i n
z t z t

    
    


      (S6)

In eq (S6), t is the time, z is the distance along the adsorber,  is the framework 

density,  is the bed voidage,  is the axial dispersion coefficient, v is the interstitial gas axD

velocity, and ),( ztq i  is the spatially averaged molar loading within the crystallites of radius 

rc, monitored at position z, and at time t. The time t = 0, corresponds to the time at which 

the feed mixture is injected at the inlet to the fixed bed. Prior to injection of the feed 
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mixture, N2 gas flows through the fixed bed. In this model described by eq (S6), the effects 

of all mechanisms that contribute to axial mixing are lumped into a single effect axial 

dispersion coefficient . Axial dispersion effects are ignored in the breakthrough axD

simulations reported in this work. 

The radial distribution of molar loadings, qi, within a spherical crystallite, of radius 

rc, is obtained from a solution of a set of differential equations describing the uptake

 i
i Nr

rrt
trq 2

2
1),(







 (S7)

The intra-crystalline fluxes Ni, in turn, are related to the radial gradients in the molar 

loadings by the Maxwell-Stefan (M-S) diffusion equations

𝑁𝑖 = ―𝜌Ð𝑖
∂𝑞𝑖

∂𝑟 ;  𝑖 = 1,2..𝑛 (S8)

For all times t ≥  0, the exterior of the crystal is brought into contact with a bulk gas 

mixture at partial pressures  that is maintained constant till the crystal reaches 0ip

thermodynamic equilibrium with the surrounding gas mixture. At any time t, the 

component loadings at the surface of the particle  is in equilibrium with the *( , )i c iq r t q

bulk phase gas mixture with partial pressures . In the general case, the component 0ip
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loadings are calculated using the Ideal Adsorbed Solution Theory (IAST) of Myers and 

Prausnitz.2 

At any time t, during the transient approach to thermodynamic equilibrium, the 

spatial-averaged component loading within the crystallites of radius rc is calculated using

drrtrq
r

tq cr

i
c

i
2

03 ),(3)(  (S9)

Summing equation (S9) over all n species in the mixture allows calculation of the 

total average molar loading of the mixture within the crystallite





n

i
it ztqztq

1
),(),( (S10)

The term  in equation (S6) is determined by solving the set of equations 
( , )iq t z
t




(S7), and (S9), and (S10).  At any time t, and position z,  the component loadings at the 

outer surface of the particle  is in equilibrium with the bulk phase gas mixture ( , , )i cq r t z

with partial pressures  in the bulk gas mixture. In the general case, the component ( , )ip t z

loadings  are calculated using the Ideal Adsorbed Solution Theory (IAST) of ( , , )i cq r t z

Myers and Prausnitz.2 
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In all of the simulations presented in this article the value of 
2

c

i

r
Ð  is assumed to be 

large enough to ensure that intra-crystalline gradients are absent and the entire crystallite 

particle can be considered to be in thermodynamic equilibrium with the surrounding bulk 

gas phase at that time t, and position z of the adsorber

),(),( ztqztq ii  (S11)

The interstitial gas velocity is related to the superficial gas velocity by


uv  (S12)

At time, t = 0, the inlet to the adsorber, z = 0, is subjected to a step input of the n-

component gas mixture and this step input is maintained till the end of the adsorption 

cycle when steady-state conditions are reached. 

00 ),0(;),0(;0 utuptpt ii  (S13)

where 00 vu   is the superficial gas velocity at the inlet to the adsorber. 

For simulations of the desorption cycle, we use a purge gas that is non-adsorbing 

(e.g. helium) that is fed to the fixed bed at the same superficial gas velocity 00 vu   as in 

the adsorption cycle.  The total pressure of the adsorbing components (1, 2, ..n) is 
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maintained at 0.2 Pa. This choice ensures that the desorption cycle is operated under 

deep vacuum.  

For comparing the separation performance of MOFs, we carried out simulations of 

transient desorption in which we choose: cross-sectional area, A = 1 m2; superficial gas 

velocity at the entrance to the bed, u0 = 0.04 m s-1; voidage of the packed bed,  = 0.4. 

We choose the mass of the adsorbent in the bed  kg, cross-sectional area, A = 180adsm 

1 m2; superficial gas velocity at the bed inlet, u0 = 0.04 m s-1; voidage of the packed bed, 

 = 0.4. If the total length of the bed is L m, the total volume of the bed is LAVbed  . The 

volume of MOF crystals used in the simulations is   1LAVads . It is important to note 

that the volume of adsorbent, adsV , includes the pore volume of the adsorbent material. If 

 is the framework density, the mass of the adsorbent in the bed is  

kg. The length L of the adsorber bed is chosen      2 -3(1 )  m  m  kg madsm L A     

as   m.  
180 300

1
L

  
 



The crystal framework densities are 

UTSA-74: ; ZnMOF-74: ; HKUST-1: .-31340 kg m  -31231 kg m  -3879 kg m 
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Therefore, the packed bed lengths are chosen as follows: UTSA-74: 

; ZnMOF-74: ; HKUST-1: .m0.223881L  m0.243704L  m0.341297L 

With the above choice of lengths of the packed beds, the mass of adsorbent in the 

bed is precisely  kg for all three MOFs. 180adsm 

In all the simulations reported here, the total pressure is assumed to be constant 

along the length of the fixed bed. All the reported transient breakthrough simulations are 

performed at 298 K and  Pa total pressure. 510tp 

For presenting the breakthrough simulation results, we use the dimensionless 

time,  



L
tu

 , obtained by dividing the actual time, t, by the characteristic time, , 
0

L L
v u




where L is the length of adsorber, v is the interstitial gas velocity. 
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Figure S14. Schematic of fixed bed adsorber.

Figure Sa presents the transient breakthrough simulations for the adsorption 

phase of 25/25/25/25 C2H4/C2H6/CO2/CH4 mixture in a fixed bed adsorber packed with 

HKUST-1, operating at 100 kPa and 298 K. The desired C2H4 product can only be 

recovered in the desorption, i.e. blowdown, cycle of PSA operations. 15b presents 

simulations of the corresponding desorption cycle in which the equilibrated bed is subject 

to deep vacuum (4 Pa). During the time interval indicated by the arrow, C2H4 of the desired 

purity can be recovered. The amount of 99%+ pure C2H4 can be determined from a 

material balance on the adsorber in the desorption cycle. Analogous breakthrough 

simulations such as presented in Figure S15 for HKUST-1 were performed also for MOF-

74 (Figure S16) and UTSA-74 (Figure S17).
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These productivity values, expressed as mole of desired C2H4 product (of 99%+ 

purity) per kg of adsorbent in packed bed for the three different MOFs are plotted in Error! 

Reference source not found.4b and S19. The x-axis in Error! Reference source not found. 

is the separation potential, , that is determined from IAST calculations using eq (S5). q

We note that the productivities determined from the transient breakthrough simulations 

(denoted as symbols) are linearly related to . The actual productivities are lower than q

the  values because of the distended nature of the transient desorption breakthroughs.  q

It is noteworthy that HKUST-1 has the highest productivity value, in line with the 

expectations of the  values.q

Table S5. Calculation results for mixture breakthrough separation.

C2H4 Uptake in mixture Separation potential Productivity of 99%+

2.77  mmol/g 2.30  mmol/g 1.25  mmol/g

3.22  mmol/g 2.50  mmol/g 1.52  mmol/g

4.72  mmol/g 4.09  mmol/g 2.97  mmol/g
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Figure S15. (a) Simulations of transient breakthroughs of 25/25/25/25 

C2H4/C2H6/CO2/CH4 mixtures in fixed bed packed with HKUST-1 operating at 298 K and 

100 kPa . (b) Simulations of transient desorption (blowdown) under deep vacuum (4 Pa 

total pressure) and 298 K. During the time interval indicated by the arrow, C2H4 product 

containing < 1% (C2H6+CO2+CH4) can be recovered.
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Figure S16. (a) Simulations of transient breakthroughs of 25/25/25/25 

C2H4/C2H6/CO2/CH4 mixtures in fixed bed packed with MOF-74 operating at 298 K and 

100 kPa . (b) Simulations of transient desorption (blowdown) under deep vacuum (4 Pa 

total pressure) and 298 K. During the time interval indicated by the arrow, C2H4 product 

containing < 1% (C2H6+CO2+CH4) can be recovered. 

Figure S17. (a) Simulations of transient breakthroughs of 25/25/25/25 

C2H4/C2H6/CO2/CH4 mixtures in fixed bed packed with UTSA-74 operating at 298 K and 

100 kPa . (b) Simulations of transient desorption (blowdown) under deep vacuum (4 Pa 

total pressure) and 298 K. During the time interval indicated by the arrow, C2H4 product 

containing < 1% (C2H6+CO2+CH4) can be recovered. 
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Figure S18. Five experimental breakthrough cycles of HKUST-1.
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Figure S19. Comparison of separation potential and productivity for UTSA-74, MOF-74 

and HKUST-1.
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